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SUMMARY

This paper can be divided into essentially two different parts. The
first part contains a qualitative discussion of the one-electron approxima-
tion and a rough review of the Bohm-Pines, van Hove-Hugenholtz and
Luttinger work. These works can be considered as representative of that
part of current many-body literature which aims directly at the behavior

of quasi-particles in normal many-fermion systems.

The second part of this paper tries to elaborate a specific method
to handle quasi-particles. The method is formally similar to the usual
Hartree-Fock scheme and it was chosen out of many possible approaches
partly because the author has been actively working with it and partly
because it is fairly simple and still illustrates the ideas and scope of present

day many-body theories.

Some of the material given here has not been published earlier to
the knowledge of the author. That goes for the iteration scheme developed
to approximate the self-energy operator M, and also for the evaluation and
discussion of the properties of the first non-trivial iteration step M(l) ,
for some different physical systems, particularly for the hydrogen-like
levels of alkali atoms. It is further shown that the Bohm-Pines treatment
of single-particle properties corresponds to an "adiabatic" approximation
of M(l) . This approximation of M(l) is however able to deal naturally

also with the periodic lattice case.



INTRODUCTION

The name one-electron approximation has almost become synonymous
with the Hartree-Fock method (HF). Here we will, however, use that name
for any scheme where a one-particle equation generates orbitals and orbital

energies which are then used to describe the properties of the system.

When the first one-electron approximation was presented by Hartree 1)
in 1928, it was received with considerable reluctance. Already the same year
Siaterz) made a careful analysis of the errors that could be expected and
showed that the amount of agreement obtained with experiment was by no
means fortuitous. Despite that the Hartree equation was not generally

3) and Fock 4) independent -

accepted and used until a few years later when Slater
ly showed that the Hartree equation augmented with an ‘exché.nge term could
be derived from the variational principle using a Slater determinant as trial

function.

The HF method has had great success both in treating atoms, molecules
and the band structure of solids. Concerning the band structure of solids, it
is really not at all obvious that the HF method, considered to be founded on
the variational principle, should give sensible results. The band structure
describes the excitation energies which form a continuum. An excitation energy
is obtained by subtracting one total energy from another. The variational
principle tells us that each total energy is the best possible, which means it
has a finite and quite large error. Thus the variational principle furnishes no
direct reason why the HF method should give a sensible band structure. This
kind of shortcoming of the variational principle also occurs, to a lesser extent,
for the cohesive energies of solids and for the excitation energies of atoms
and molecules. It is the purpose of this paper to try to explain, from a many-
-particle standpoint, why and when the HF equations give a reasonable descrip-
tion of excitation spectra and also 1o describe different attempts to improve

the HF equation by a "correlation potential" or "polarization potential”.

In the HF method the total wavefunction is described by one Slater
determinant. A Slater determinant is really a very poor approximation to the
true wave function and it can indeed by shown that the overlap integral be-
tween any Slater determinant and the true wave function tends to zero
exponentially with the number of particles in any normal system. In a Slater
determinant there is some correlation between particles of the same spin

brought about by the Pauli principle (the Fermi hole), but correlation between
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particles of opposite spin is totally missing?)This effect can be studied for
e.g. helium where very accurate wave functions have been calculated. If
one keeps the position of one electron fixed and plots the wave function
against the distance r between the two electrons there results the so
called correlation hole or Coulomb hole, which for helium is a curve fair-
ly well approximated by the expression C(l1 +3r) up to r of the order of

one atomic unit.

Though this correlation feature cannot be incorporated in any Slater
determinant it can be brought into the HF equation itself by adding a correla-
tion term. This cannot be justified if one looks upon the HF eq. as some-
thing providing orbitals for a complete N electron wave function but it is
very reasonable if one takes the original intuitive standpoint Hartree had
when first deriving the equations. Then one focuses attention on one specific
electron and that electron should not see the average potential but there
should be a correlation hole in the charge distribution of the other electrors.
There are several treatments of such polarization effects. The simplest
example is the case of an atom where one electron has an orbit lying outside
the remaining ion. The polarization of the ion causes an extra term in the
potential equal to -%al/r4 , where a is the ion polarizability. Another
famous example is the case of an electron moving in a highly excited state
round a charged impurity in a semiconductor. The energy levels are then
described quite accurately by a hydrogen-like formula with an effective mass
and a dielectric constant. These two cases have been justified rigorously,
the first by van Vleck and Whitelaw and independently Mayer and Mayer 6)
in 1933 and the second by Kohn 7)

these cases are really equations for quasiparticles or dressed particles,

in 1957. The sirgle particle equations in

that is equations for a bare electron and a polarization cloud.

It was more difficult however to justify a polarization term in band
calculations of crystals. Attempts were made by Callaway 8) in 1957 to
9) .

include polarization of the ion cores in alkali metals and by Wohlfarth “/ in
1950 to use a screened Coulomb potential in the exchange term of an
electron gas. It is only quite recently that one-electron equations with a

polarization term for solids have obtained a proper interpretation.



4.

THE BOHM-PINES COLLECTIVE APPROACH

A large step forward towards the understanding of the behavior of
electrons in a metal was made with the work by Bohm and Pines 10) in 1953,
which was extended and refined mainly by Pines. The basic idea was to treat
first the collective behavior, i.e. the plasma vibrations of the electrons.
The plasma vibrations are brought about by the long range of the coulomb
force and are responsible for the long range correlation between the elec-
trons. It is a high frequency phenomenon corresponding to energies of
typically 10 to 20 eV, and it can be observed by measuring energy loss of

fast electrons passing through thin metal foils.

As coordinates for the collective plasma vibrations Bohm and Pines
used those Fourier components of the electron density for which k was
smaller than some cut off value kc . They also kept all electron coordinates
and thus they had to introduce subsidiary conditions on the wave function to
be justified in treating all considered coordinates independently. These
subsidiary conditions have caused a good deal of trouble and form a weak
point in the Bohm-Pines theory as also does the uncertainty in the choice

of the cut off value kc .

After writing the Hamiltonian in a form exhibiting the collective
coordinates and adding terms containing collective momenta, the effect of
which was nullified by the subsidiary conditions, Bohm and Pines performed
a series of canonical transformations which brought the extended Hamiltonian
on a form having a collective part, a quasi-particle part and supposedly weak
interaction terms. The collective part had essentially an harmonic oscillator
form-and the quasi-particle part looked like the original Hamiltonian but
with the coulomb potential replaced by a screened interaction of almost the

Yukawa form, e ~A T/r.

A reasonable first approximation for this Hamiltonian is a product of
harmonic oscillator functions of the collective coordinates and a Slater
determinant of plane waves. The collective part contains the long range cor-
relation and the Slater determinant can be improved by a perturbation ex-
pansion in the short ranged interaction to include short range correlations.
This perturbation expansion is conve gent contrary to an expansion in the

unscreened coulomb interaction, 1,r .

In calculating the total energy the collective part is essential and
brings about a very reasonable result, but in treating the single particle

behavior the plasma part can be left out in the first approximation since the
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large excitation energy of 2 "plasmon" makes it essentially frozen in,
when only the low excitations close to the Fermi surface are considered.
The quasi particle part in the Bohm Pines Hamiltonian has been success-
fully used in evaluating different single particle properties. A good
review of the earlier calculations is given by Pines in Solid State Physics,
vol. 1 (1955). More extended calculations have been made by Fletcher
and Larsson 1) (1958).

THE LINKED CLUSTER INFINITE PERTURBATION EXPANSION

The basic physical ideas behind the single particle behavior of elec-
trons in solids is well described by the Bohm-Pines theory but more
rigorous developments furnishing both exact formal results and quantitative
estimates have utilized field theoretical methods. The first break through
for infinite order perturbation theory treatment of many body systems came
with the work by Brueckner 12) in 1955. Ordinary Rayleigh-Schrédinger
perturbation theory gives rise to terms of higher and higher powers in the
number of particles N, but Brueckner showed explicitly for the lowest
orders in the expansion that these unphysical terms cancel and he assumed
that this mechanism worked for all orders. That this really is the case was
shown by Goldstone 13) who proved the so called linked cluster theorem. In
the Brueckner-Goldstone expansion every term is represented by a linked
cluster diagram giving a contribution at most proportional to N . Goldstone
utilized methods and results from quantum field theory and his diagrams

were those introduced by Feynman in 1949.

These results were almost immediately followed up by Hubbard 14)

who published two papers in 1957 on collective motions in terms of many -
-body perturbation theory. The first paper was purely formal and has become
a corner stone in this field and the second contained a numerical calculation
of the energy of an electron gas. The results agreed very well with those of

Bohm and Pines.



THE van HOVE-HUGENHOLTZ QUASI-PARTICLES

Parallel to the Brueckner-Goldstone-Hubbard work, van Hove and
Hugenholtz 15) during the years 1955 to 1958 developed their own technique
to handle the perturbation theory of large quantum systems. They obtained
results which in many respects went further than those of Goldstone and
Hubbard, but since their technique was much more complicated it has not
been so widely used. Their work centered on the properties of the low
excitations in a Fermi gas, and the most important results are perhaps the
following. Consider a low excited eigenstate of an Hamiltonian with no
interparticle interactions. The statevector is a Slater determinant with
N particles filling a Fermi sphere with radius kF and one additional
particle close to the Fermi surface. Switch on the interactions slowly
(adiabatically). The resulting state isthenan asymptotically stationary state
of the full Hamiltonian with a decay time proportional to l/(k-kF)Z . They
also showed that the energy of the perturbed state when the extra particle
is on the Fermi surface is equal to the ground state energy of the N particle

system plus the average energy per particle.

The van Hove -Hugenholtz results apply only to a translationally
invariant system, such as an electron gas, and the assumption that the
infinite order perturbation expansion really converges has later been
criticized by van Hove 16) himself. Even if the series should diverge math-
ematically it could still provide a good asymptotic representation. The re-
sults must be considered as a large step towards the understanding of quasi-
-particles. Their results indicate that it is justified to use a model for the
actual system with a single particle Hamiltonian whose eigenstates are in
one to one correspondence with slowly decaying states of the true Hamil-
tonian. Approximate calculations of the decay time give a mean free path
of the order of 100 000 A at room temperature for an energy of the extra
particle equal to kT 17). That is usually much longer than the mean free
path due to phonon collisions and therefore negligible. The results are,
however, incomplete in the respect that they apply only to the case with one
particle outside a filled Fermi sphere and it remains to show that a model
state corresponding to many excited particles has a true energy which is
the sum of the corresponding quasi-particle energies. One has further to
show that the adiabatic transforms of the low excited model states with all
possible combinations of particles and holes (unfilled states inside the

Fermi surface) really furnish all low excited true states.



THE LUTTINGER THERMODYNAMIC APPROACH

A more gencral approach to the concept of a Fermi surface and

18)

papers published in 1960 and 1961. His theory is applicable to non-zero

properties connected with it has been made by Luttinger in a series of

temperatures. The partition function is represented by an infinite series
19) in 1958,

The expansion is formally very siniilar to the Brueckner-Goldstone

expansion in a way first developed by Bloch and de Dominicis

expansion, the Feynman propagators being modified to include temperature
and a slightly larger class of diagrims to be considered. In the first two
papers which were worked out together with Kohn and Ward it was shown
that the extra diagrams in the statistical mechanical expansion, so called
anomalous diagrams, in certain cases gave rise to non-zero contributions
in the limit when T goes to wero. In these cases, which actually include
the most interesting situations such as a periodic lattice, the Brueckner-
-Coldstone series has to be modified. During the detailed investigation
necessary to establish this, several very interesting results appeared as
by-producis. Most of these were purely mathematical but for one thing they
established that a certain clacs of quasi-stationary states of the interacting
system in the translationally invariant case had alife-time proportional to
1/(k-kF,)2 +« These states are not the same as those considered by Hugen-
holtz and van Hove but are instead related to the Green functions or single

particle propagators used by Martin and Schwinger and others.

In three papers Luttinger derived some very interesting results
subject only to the restriction that the infinite order perturbation theory
should be convergent or at least furnish a good asymptotic representation.
He found that n,
k , had a discontinuity on one or several surfaces in k-space which collec-

20)

tion of surfaces he defined as the Fermi surface of the interacting system .

the mean occupation number for the plane wave state

In the translationally invariant case the Fermi surface is determined by the

relation

pe Cu + KK (r\) (1)

where p is the chemical potential, “x is the enerry in the non-interacting

case, kz/Z , and Kk(E) is the real part of the so called self energy of the



quasi-particle,

Ke(®) ¢ i Je(E) (2)

where we have plus sign when E < p and minus sign when E >,
I (E)20, J(n) = 0. The energy of the above-mentioned quasi-stationary

state is
Ev + Ex (3)

where EN is the ground state energy of an N-particle system and Ek is

determined by the equation

Ew = ex + Ku (Fy) (4)

Jk(Ek) is the inverse of the lifetime of the state.

Luttinger also obtained exact results for the low temperature heat
capacity, the spin paramagnetism, the compressibility and the characteristics
of the de Haas-van Alphen oscillations. Most of the development is concerned
with the translationally invariant situation but the main features of the theory
in the band case are given and also an explicit expression for the heat
capacity. The forms of these expressions are very similar to those in the
non-interacting case. So is e.g. the heat capacity in the interactionless case
proportional to the level density at the Fermi surface calculated from the
orbital energies € Kk whereas in Luttinger's expression the quasi-particle
energies Ek appear and the integration is taken over the true Fermi
surface. Luttinger also showed that the volume in k-space inside the Fermi
surface is the same in the non-interacting and interacting cases. This means,
of course, that the Fermi surface is unchanged in the translationally in-

variant case, since by symmetry it has to be spherical.



THE GREEN FUNCTION FORMALISM

Besides the perturbation-theoretic treatment of many-body systems
there is a large branch of research utilizing Green functions. The
Schrédinger equation is then converted into a chain of coupled differential
equations involving higher and higher orders of Green functions. The
method used to handle this system is usually to insert a specific approx-
imation for say the two-particle Green function and thus closing the system
of equations. Green functions or particle propagators have long been used
in field theory. Their statistical-mechanical versions were introduced by
Matsubara 21) in 1955 and the zero temperature forms were extensively
treated with respect to their spectral properties by Galitskii and Migdal 22)
in 1958. The perhaps most well-known paper in this area is that by Martin

and Schwinger 23) in 1959.

We will not review any specific work on Green functions but instead
make a development that borrows features from many different papers
and leads straight to the derivation of a single particle equation where the
orbitals and orbital energies have an exact interpretation with respect to
the many body system. The orbital energies are actually identical to the
quasi-particle energies used by Luttinger and the orbitals are simply related
to the first order density matrix of the system. Such an equation was first
derived by Pratt 25) in 1960 starting from a theorem derived by Hugenholtz 15)
and by Bloch and Horowitz 26). Phillips 21) derived a similar equation in
1961 from Hubbard's 14) theory and gave a discussion of the order of magnitude

of the different terms.

SPECTRAL RESOLUTION OF THE ONE-PARTICLE GREEN FUNCTION

The one-particle Green function is defined as

Gxx) == N[ T (vl ¢) ) IND ®

where x stands for three space coordinates and the spin and time coordinates.
P(x) is the field operator in the Heisenberg representation and |N> is the
state vector for the ground state of an N-electron system. T is the time-

ordering operator placing the operator with the latest time to the left and in-
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serting a minus sign if the operators Y and xp+ change places. For equal

times G is defined as

Gletirt) = v NyTEY) iEOINY = 2 ) @

where x stands for space and spin coordinates and P(i‘.' :\_:_') is the usual
first order density matrix. G has a very direct physical interpretation
which becomes clear if we take say t > t' and rewrite G slightly (EN is
the ground state energy of the N-particle system),

' )
. -iNT ot HT >
Gt t)m- i N[ vl) € H Tt I = - (N e T @) N
H"H'EN ,Tu f-tl. (7)
Thus G gives the probability amplitude that a particle created at the point
x' at time t' reaches the point x at time t. That statement is actually
not quite true since the states involved are not normalized to unity but the

relation anyhow makes it reasonable to call G a single particle propagator.

We will now consider the spectral resolution of G(f, i'; t), where
T=t-t', '
-lERT

Gaiz)= - Z e fle) e T>so

(8)
-l e‘

i Lo w)iee T<o

where

€cve Entik -En €= En- En-1,4

fu = (Nl R) INL & g = eI 1@ NS (9)

In a HF approximation the state vectors are single Slater determinants and

the g-functions then become the occupied orbitals, the f-functions the virtual
orbitals and the € -values the corresponding orbital energies. In general there
are an infinite number of g-functions. The f-functions and the g-functions

are further not in general normalized to unity and each set has linear depend-

ences between its functions. We now make a Fourier transform with respect

to time,
00 £
;67 - alt (x}f «') %) 3ds)
G(ﬁ,t_.,'-e)-" j 6 ,g‘;z)e“ ! iz = Z k—c:ua * ¢‘Z é-C¢-co
-0

(10)
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To have a unique definition for all ¢ an infinitesimal positive convergence
factor' A has been introduced. For a discrete spectrum G has simple
poles at each of the "quasi-particle" energies €, and €, . Fora con-
tinuous spectrum the sums are converted into integrals and the poles dis-

appear.

THE SELF-ENERGY OPERATOR M AND THE
QUASI-PARTICLES

It is convenient to introduce the self-energy operator M(x,x') which

can be considered as defined by the relation (the Dyson equation),
G =G, + G MG (11)

where Go is the Green function when there are no interparticle interactions
and GOMG is a matrix product, x and x' being matrix indices. This rela-~
tion becomes very simple when there is translational invariance since a
Fourier transform with respect to space and time then factorizes the matrix

product (G.o'l(_li, €)= € - ¢ and all matrices are diagonal in spin),

k ’

K€ + ¢ Jule) E<p
1 ) e
Glke) = €-e - M&e) Ml&.6) =)Kye) - ¢ Jk(é))enil !

Kyr Jyr €y» and p are the same quantities as used by Luttinger. M(k,¢ )
can be analytically continued to complex values of ¢ , the continuations being
different, however, starting from the part of the real axis where € > p and
the part where € <p . We now consider a value of ¢ slightly larger than
TR Jk(e ) is then larger than zero but small. We may then assume that
G(k,¢ ) has a pole slightly under the real axis, say at € = ¢ *. By deform-

ing the contour of integration for € in the expression
-
1 (€T
Gl = iz J Gl,e) e
- ad

Re | )0 (13)

to run as
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A
fb \ .
%) ER 4
A
Y
we optain
v.e‘t . - Eu + K“ T "’JK“)
Go) =-ie” " L= -t “( ) +... (14)

The + .... comes from the contribution for € =p+1i ¢, since G(k, ¢ )

is different in the upward and downward paths, these paths belonging to dif-
ferent analytical continuations. There could also possibly be more poles

than the one at ¢ * and the contour has then to be deformed correspondingly.
Assuming the + .... terms to be small 22) we find that G(E, 7) describes
a quasi-particle with energy « Kt Kk - iJk . We can also study G from

its spectral resolution, eq. (8). An approximately exponential dependence

of T will result if the k:th Fouri'er component of the £f*-products is essen-
tially different from zero only within a narrow energy region for the ¢ K *

The center of this region is then e xt Kk and its spread Jk .

THE EQUATION FOR G AND FOR THE AMPLITUDES

We now return to the case with no translational invariance. After
Fourier transforming the Dyson equation, (11), with respect to time, where
we still have translational invariance, and utilizing the relation Go-l(e ) =

= ¢ ~h, where h is the relevant single particle operator, we obtain

(e-—{»- M(’;))G(e)-_- 1 (15)

where the matrix indices x and x' are suppressed. Inserting the spectral

resolution for G(e ) and the identity

L emfE) « Ll 4te) = Sle-x) (16

which is trivially obtained from the anticommutation relation of ¢ and ¢+
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we obtain

ot R, T I ) S oLy

Now let ¢ approach ¢ Kk and assume that those fk for which the ¢ 3

are equal, are linearly independent. We then have

-t - Mew) fx = O . ‘18;

This is the single particle equation we set out to derive. The assumpiion
made about linear independence of the fk is really very weak as can te
checked by considering explicit examples. The fk for different ¢ ETe
on the other hand by no means in general linearly independent. A\ sirailar
equation is of course also obtained for the gy * The equation is valid wihen

k is a discrete energy level. It is also valid when E is cont’r -

Enstr Nt
uous if E becomes discrete when we consider only a specific symmnetry of
the f as in the case of an extra particle in a semi-conductor. ™ha fixrst non
trivial approximation to this equation in case of a semiconductor was derived
by Pratt 25) (1960). The equation in its general form was sugg~sted by Hedin
and Lundqvist 28) (1960) but the amplitudes 8 Were there erronously identi-

fied with the Léwdin 29) natural spin-orbitals.

I“or a dlb(.rele spectrum G(e) and G (e) are Hermitian and thus
M(e) = '1( ) - (e) is Hermitian, but for a continuous spectrum M({e)

is not Herm1t1an in general. We can then consider the equation

(»"{m'f"‘(é‘))é)r.o) (19)

and try to interpret it. When the M-operator is non-Hermitian, theo cigen-
values < in general become complex. In analogy with the analysis made for
G(7) in the translationally invariant case one might expect that ¢ corresponds
to a wave-packet of functions ik and the real part of e to their mean =nergy.
In case of one extra electron in an insulator, M remains Hermitian {or a
certain range of € -values. This case has been treated extensively by Kohn

and Ambegaokar 30) from a more general point of view than the aboz nqua-

tion.
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APPROXIMATIONS TO THE M-OPERATOR

To make the equation useful we now have to obtain approximations to
the M-operator. One method is to make a perturbation expansion for M,
which can be represented by a well known set of diagrams. We can also
utilize the Martin and Schwinger 23) method with functional derivatives, and
thus circumvent the usual convergence difficulties. It is then possible to

obtain an expansion in higher and higher orders of correlation functions

LT e@)> |, <TE0 PR re)d s (20)
where f’(”) - (’)1’@)({(1) _ < qyl'(,’) ‘{)(1)> . (21)

Each order is obtained by an iteration procedure and the expansion could
reasonably be expected to have much better convergence properties than the
usual one in eZ . The details of the derivation are evaluated in an appendix
since the possibility of using an iteration scheme is not pointed out earlier

in the literature to the knowledge of the author.

The first approximation is Hartree-like

(5k -ty - V(é)) hhy =0 , (22)

where (23)

Vig) = § vige ) P> by | wkr) = TEBI )

and < p (_)> is the true density of the N electron system. The next iterz-

Ex- 0@ - Vi) Fei) - I MOy e Fu)ae =0, e

& L J‘
Mkgie) = 27 J Gleje-¢) N e)de | @
and NV(x x') is a screened potential first introduced by Hubbard,

Vi) = v k) - i fvley) <r(ply) )y H(vie) bydy?
v (X, )c') (k') 5({ ¢') (26)

1f the correla.txon term in "V is neglected we are back to a HF-like approx-

imation. The correlation term is, however, quite tractable since it is re-
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lated in a simple way to the linear response function of the system, which
in turn can be approximately evaluated from a time-dependent Hartree or
HF treatment. G could be approximated with the solution for the Hartree
or HF -like equation. The next term is much more complicated and hard to
deal with, though Hubbard has tried to include it in a qualitative way in his
treatment of the electron gas. Hubbard 14) treated M(l) by numerical
methods in the above mentioned approximation (time dependent Hartree
31) (1957) and DuBois %)

(1959) made an expansion in r_, the interparticle distance. This expan-

and G = Go) whereas Gell-Mann and Brueckner

sion is only valid at most up to T = 2, but one could hope that the complete
M(l) term should give a reasonable approximation also in the metallic
density region (rs = 2-5). We will call M(l) the polarization approxima-

tion for M, for reasons which will become clear in the next section.

DISCUSSION OF THE POLARIZATION APPROXIMATION FOR M

The formal properties of.-the polarization approximation for M,
eq. (25), such as its spectral resolution and its relation to the linear response
function are discussed in an appendix. In this section we will utilize these
results in a discussion of how the approximation works for some simple
physical systems and how it is related to approximations developed by other
authors.

Let us first consider the simple situation of an electron moving well
outside a closed shell ion. The energy levels are then to a first approximation
hydrogen-like. Exchange effects have little influence but the polarization of
the ion by the outer electron gives a small shift of the hydrogen-like energy

levels which has been observed to a fair accuracy O 33).

A simple and reasonably accurate way to calculate this shift is
furnished by an "adiabatic” approximation 342 The outer electron is then
considered as a fixed point charge which polarizes the ion. The induced
charge density p(x) gives rise to an extra potential ¢(x), which acts back

on the outer electron,

by = Jvluy) o) by o

The factorzl- arises since -grad ¢(x) has to give the force on the outer elec-
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tron and the gradient acts on both v and p(x'), the latter containing x
implicitly. Calculating the induced charge by linear response we have from
eq. (B16)

d(y) = R (kL0 = Flex;0), (28)

where *,.)
' Fly) Ps &)
Flxio) = - 25: Ens - ENo (29)

Pew) = Jo(ee’) KN[pR)INsy 4k .
An equivalent result can be obtained by a quite rigorous treatment.

Since ¢(§) is a small perturbation it is sufficient to consider its
expectation value with respect to the outer electron orbital. Using the assump-

tion that this orbital is well outside the ion and observing that the expression

> _SNIpEINSS <NslpE&)IND (30)

S EN,S - EnN,0

is essentially different irom zero only when x and x' are more or less in-
side the ion (the expression (30) is the kernel in the linear response function
and we do not expect much induced charge outside the ion), we can obtain a
good approximation of ¢(3c_) by making a multipole expansion of the coulomb
potentials. The constant terms vanish and if we keep only the dipole terms
we have

Rej(X Bs
F(Xa, x’I; 0) —_ ‘(&____(._———)-

ENs - ENo |X" |"‘3

R< = <N‘olg§‘1 £ IN,s) o1

and thus

1
)= - % e %

where a is the static polarizability of the i;)n. This result can also be ob-

(32)

tained from a very simple argument as shown by Born and Heisenberg 35) in
1924.

We now want to show how the polarization approximation for M can
reproduce eq. (28). From the appendix, eq. (B4), we find that M(l) is equal
to a HF -like exchange term, which we neglect in this case, plus a polariza-

tion potential Vp . From eq. (B10) we have,

(F. (Ve @,m;eg)lfk)= (ﬂlzk:/ f b Flew-e)) ;k) (33)
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where £, is the outer orbital we are considering, and terms with €< I

have been neglected since they contain ion orbitals and thus are small where
fk is appreciable. Since the ion has a closed shell structure we can assume
that the ion excitation energies are much larger than the differences € - ek'
for those k' where fk' and fk have significant overlap. Thus we approxi-

mate

(Fe Vpleal Fe) = (| 3 b Flo) i) =
= [R50 5o Flaxrolfew) dese

and have by that obtained the same approximation as the "adiabatic" one.

(34)

Another method to approximate the polarization approximation is ob-
tained by making an assumption about the time behavior of G and AV .
V (¥) without the polarization part is simply v(1) which contains a §-function
in 7. We now assume that polarization does not broaden this 5-function peak
too much, so that the time variation of G(7) within the peak still can be
neglected except for the discontinuity of G(t) at t=0 . Using the HF -

-approximation for G we have

Unoce occ

6l x;z) = -1e~ M7 [66) 7w uli) - 60 Z b)) | (os)

where 1 T Y>>0
@)=]0 tT<O

Our assumption about the time dependences amounts to putting e-J‘h‘r

= 1 .
Using the identity

Uhocc occ

G M@ UL ) + L) W) =Fg-x), 9
we then have '

&k xiz)= -2 (9(7:) S(-£') — Z:cu,‘wu,f@g}' (37)

From (A25) and (37) we obtain

M(‘)(x,,»’;t) = 1 G(x,x’;t) V(x,z’; z) =

= 0) 5i-2)(Vpu';z) - v@,g;;f)} - 2 welyud ) Vo x; )

(38)
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Since v('r+) @(=) = 0 we are allowed to put an extra v into the first term
of the last member of (38), thus emphasizing that this term only contains
the polarization part of 'V . Performing a Fourier transform with respect

to time we have, compare with (B6),

(.14
M [rie)=F(-t')Flerse) - é @) Vg x'se), 9

M(i' %' 0) thus gives the "adiabatic" approximation with one medification,
namely we have a screened potential instead of v in the exchange term.
This modification makes no difference in the ion plus outer electron case
since there the exchange term anyhow is small. For an electron gas on the
other hand it is the second term rather than the first which is important.
The first term is local in space and thus by translational invariance it is a
constant and gives only a constant shift of the quasi-particle energies. The
second term is similar to the one used by Pines 36) to evaluate single-particle
properties, though the screening lengths are somewhat different. Thus e.g.
the anomaly for the specific heat of an electron gas which appears in a

HF approximation, is not present when a screened potential is used, as

shown already by Wohlfarth 9).

Although the first term is trivial for an electron gas it may be quite
important for a real solid. This term has been considered by Callaway 8) for
alkali metals. Unfortunately for this discussion he only estimates its effect
on the cohesive energy rather than on the band structure. Phillips 27) argues
from a diflerent type of approach that this term should have little importance
in the weakly periodic case. It should, however, be realized that even though
this term might be essentially constant within a band it could differ
appreciably between bands. Another type of approach using a "projected
wave {ield" has recently been made by Bassani, Robinson, Goodman and
Schrieffer 37)

the "Orthogonalized Plane Wave" method. The basic physical idea is that

- This approach is adepted to utilize the rapid convergence of

the core electrons can be treated dynamically independent of the valence

electrons.

If we should like to calculate M(l) through the linear recponse
function and want to keep the approximation (39), we have to take it in the
static limit, that is ¢ = 0. The complete expression for the real part of
Vp is given by (B24). It involves the real part of the response function as
well as the imaginary part which is a kind of oscillator strengih, R('Z)(w)

gives a measare of the probability for a transition between the ground state
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his been carried out.

Also in the present context we are faced with a self-consistency
nroblem. When a specific type of approximation for the M-operator is
chosen we have to iterate to obtain self-consistently the orbitals which
form the propagator G . In a specific step of this procedure, solving for
the orbitals using a rough potential, we may of course utilize the varia- "
tional principle. We may also convert this intermediate problem to ma-
trix form, expanding the orbitals in a fixed truncated basis set of say
r functions. The r orbital solutions we then obtain provide the corre-

sponding truncation of the infinite summation appearing in Vp(l) , eq. (B24).

The present formalism is so far inadequate in treating multiplicity
splittings. The main applicability is to atoms, molecules and solids with
one electron outside a closed configuration and to metals where there are
s0 many electrons outside a closed configuration (the ions) that coupling

between spins of different conduction electrons become unimportant.

The instability sometimes observed in calculating orbital energies
in the HF method could very well be related to this failure of taking
multiplicity splittings into account. The density matrix is, however, quite
stable and that is all that is needed as regards the excited orbitals.
Specifically as regards band structure the exact theory makes predictions
only for excitations close to the Fermi surface and there is hence an addi-

tional reason to regard the lower bands as less significant.

It should finally be recognized that the development given in the last
lew sections of one-electron behaviour is by no means complete. Thus e.g.
the vibrations of the atoms can very well give an influence on the quasi-
-particle spectrum comparable to the polarization effects 38). Further in
considering transport processes not only the quasi-particle spectrum is
important but also the effective field inside the solid, the calculation of which
is quite a problem in itself. Transport processes are perhaps most effective-

ly treated with the temperature dependent Green function formalism.
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APPENDIX

A. APPROXIMATION OF THE M OPERATOR
THROUGH AN ITERATION PROCEDURE

The equation of motion for the field operator in the Heisenberg repre-

sentation is
i3 9= [yw,HT . (A1)

After evaluating the commutator we have

(18—t - Joa o) ) iy = 0, (a2)
where

p =T, yi= e we ™ pe= 5 e
Y= {0ty vwds + L[V vs) vk vu) iy be ke’

The functions uy form a complete orthonormal set and ap is an annihila-

tion operator. An equation for the Green function i3 now easily obtained from
(A2),

(1% -10)641 +[viy 6p12%1)d@) = S67), @9
where

Gy = o) {T(YnyTe)>
Glia;ra) = (-0 LT (v @) W) VT@) 16 > (a5)

(’”) = (_}él)‘f; "A> ) A>O and intin'tesimal.
In eq. (A4) the first and second order Green functions are coupled. Martin
and Schwinger 23) have shown that the term with G(1,2; 1',2') can be ex-
pressed as a functional derivative of G(1,2) . Since their proof is rather

complicated and not very explicit we will rederive the functional derivative

expression by elementary methods.

Consider a Hamiltonian H_ in the Schrbdinger picture
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)
He = Hf + w (t) (A6)

where HS(O) is identical with the Hamiltonian H defined in (A3) and w (t)

is a small perturbing time dependent potential

wi(t) = Jf()_t) wiet) hy , Pl)= ¢ Y E) (A7)
where w(x, t) is taken as spin independent (x involves in general both space

and spin). The time evolution of the state vector in the Schrédinger picture

is described by an operator V(t,t'),

£ = V)Y, (a8)

Since [t>s satisfies the Schrédinger equation, V(t,t') has to satisfy

PR VEE) = (MO van®) Ve 5 V=1, (49)

We also introduce the unperturbed time evolution operator U(t,t') = e.lH(t-t ),

which satisfies

! —
(L UbY) = HOURY) T Uk =1 (A10)
The differential eq. (A9) is then converted into an integral eq.

VEE) = UEE) =Ly Ut an @) VI EIRE,

The crucial quantity we need is the functional derivative of V(t,t') with

respect to the perturbing potential w(x,t), which from (A11) becomes,

svike) _ gVEE)
b () §ar (Y, ta) ‘)

= -1 sgn(lué)u(ff,‘)fét)\/(ﬁ) /} ‘Lf u{ééllj'ks/fly da(2,) (A12)
+1 t>o
sgnt = { t<o

when t, is in the time interval determined by t and t', otherwise g—v‘% is

zero. Putting w = 0 in (A12) we have

')
[Ss\,(‘ff(‘i} ]‘\J"_“ = ~4 S?n(l’-— t’)U(f,h_} f(XL) u{éa,‘f') R (A13)

The general expression for the functional derivative in question is

58\{;,&") - -1 sqn(é-' L-') V(f, é,.) f()—("‘} V(fs., f') i (A 14)
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as can be verified by substituting (A14) into (A12).

It is convenient to introduce the following type of expectation values

to use in the Green functions

ne Lt b T) V(T t) ¢yl ¥ () [6:),
<Y(x)q’flz)>" - s<t°‘u(£0, ._’._) V(T, éc)‘faz

where LpH(x) = V(t_,t) P(x) V(t,t)) - We consider t tobe some time in the

(A15)

distant past and lto>s to be the ground state of H. T is a time far in the
future and we do not allow w(t) to be different from zero for other t than
those in the interval between t ~and T . When w(t) is zero for all t the
definition (A15) gives the expectation value of Heisenberg operators with
respect to the ground state, cf eq. (5). The matrix element in (A15) has the
same structure as those used in scattering theory, that is a matrix element
between unperturbed states at times far in the future, U(T, tc)lto >s , and

far in the past, ItO >, » with a scattering matrix V(T, to) inserted.

'With the present definition of matrix elements the equation for G(1, !')

becomes

(é\f‘g - ) - Wk, é)) G, +13f v{i*2) G132 )= 801

The term containing the second order Green function can be rewritten by aid

of the equation

% = = LT (p) (0 ¥Tay) > +1607)< f(z,zzl;—_‘
= —G(2,1;2% 1) +1 G119 PR)Y. '

Thus equation (A16) becomes

(L& - 4 -va) el -1 fories) SEE Je)- gris

where

va) = @) + S e AG). (a19)

To obtain an iteration procedure for solving (A18), it is essential to introduce

the inverse of the Green function,

J 6700 6, 1) d) = SG1) . (a20)

We further note that -1,
§G (24

2?%(%%%)— - ~ifGuy) Fwor 6 M.,
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We choose to define the zero order Green function by the Hartree-like equa-

tion,

(3 -40-v0) 6 40) = 5o, e
and hence the self energy operator M becomes

—‘1 /
Maa) =i Jrat3) 6ax) S A0 aE e

since (A23) inserted in (A18) gives

(1: f't - b - V(‘l)) a@v) - fM(’l,Z}G.(Q.;I ') &(2):—_5—6'1'J’(A24)

With a specific approximation for M, the corresponding approximation for

G can be obtained from eq. (A24) and put back into eq. (A23), thus giving
the next iteration step in the approximation sequence for M . The first

approximation for M is obtained by using G(o) in eq. (A23),

MO fa) = -5 Jor 7 3) G2 2o 6 () R Ap)=
=-1/ 6264) Vo) g\/(q) &P 4(1.{9,) Qo) b)) = 429
=1 6%.2) Y0

Here the Hubbard effective potential v has been introduced,

Vo = v () sy V) Ao - .
A2

= w9 -1 [705) T e P> vi2) A0,

The next approximation for M is obtained by calculating G(l) from the

equation

(12 -te)-va)6 b - IMPan6le dp = 1), wen

and then use the solution in (A23),

B 2)= -4 dv ) 670 S 6l B B =
’  (a28)
=3 6% Vaa) + 1 vt 96 Y2 M o)

To calculate the functional derivative of M(l) we need those of G(o) and AV ’
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56N _ 5 Vi) 56@ 5 ¢
Gm}(w f 5—«%) 6" (z 5) '7:“\7‘(177"Z 6" /u) VOLIIT,
= I %) (z 9 Gl M) (A29)

KL~ Loy v <T(ploptiets) > ADHE) .

The expression for M(z) becomes,
MYy = 1 602 Ve — L V04 6w 6y G 6w Werz) Ayl +
v PBIPM)PB) Y VIV VA6 Y216 % 1) By Ay 2/,

If we use the symbols

(A30)

——— AAAAAAAY v n maw
L 1 1 2 1 LR

G {1,2) Vi) (1) (A31)

the approximation we have now obtained for V+M can be written (we neglect

the difference between G(o) and’ G(l) , and represent them with the symbol

1
for G)r 4.._.
e N + + V-
% 9~
where o (3) stands for the three particle correlation function in eq. {A30).

The first term in M(l) and M(Z) obviously converges to iG(1, 2)~V(1, 2},
and we have not always been careful to state what kind of approximation for
G is considered. The perturbing potential w is of course to be put equal

to zero once the expression for the required approximation has been obtained.
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. B. THE SPECTRAL RESOLUTION OF M(l) AND ITS
RELATION TO THE LINEAR RESPONSE FUNCTION

We Fourier transform eq. (A24) with respect to the time difference,

t-t' =1,
(e MO V(1))G 41¢) - fM(m.;e) Gltie) dxs) = 8,4 . (1)

For the M operator we take the approximation (A25)

Mh’(l,z;e) =1 .J; 6oy Vosze'  ~ dz = i%cié»(l.z;e-ey’lﬁz;eylg (B2)

The v(1+,2) term in V(l, 2), eq. (A26) gives a HF type exchange term,

1 J: GlaiT) vl 1) Sle+d) €T d = LV, 1) G () 22;-4) =
= =V, k) P, x2)

For the remaining part of the M‘l) operator we introduce the name polariza-
tion potential, Vp(l, 2;¢),

(B3)

MPta0) = - v, k) + Vp loxeie) (®4)

The spectral resolution of G has already been given, eq. (10). We rewrite

it in a slightly more compact form

Z‘_ f (E') fm [/£9)]

(B5)

G (¢, %;¢)

where ®m stands for both the fk and the g and € is either € " iA

or ¢, +iA. Since ¢ >p >¢, the poles of G(1,2; €) are distributed

according to figure 2.

XX nx&-r Figure 2,

VA da st g ba M %

Note that p is somewhat arbitrary for a discrete spectrum and could there

be taken as e.g. the mean value of the smallest ¢ and the largest € -

k
We also make a spectral resolution of the part of V that remains after v

is taken away,
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SO gt Cript pl)> i) i) 2ty =
’_.!. Cur Iz i) j’l)’@:,!;s) 'V(a_l’z,!l/)&sih [ <f()_!,)€"(” g ﬁ',)>é(tj *
+ < p) o L(H-Ee) ’f(z 3> 0(-1) — <plyd <PZ¢)>]

S ANAS RR) (
= ; és- 6534' Y Z— < fés LA = F’(tz;é} *+ Fﬂ’z; —é/o
! REIR) Rg) = Jvee) <Nlpr)ins)
F(tl;é) = é € —és‘f‘!:A {66 = EN'S _ EN .

The prime on the sums stands for deleting the term with s = 0 . In writing

the last step of (B6) we have used the fact that é E(")“P (%) is real,
wlong

which is true also when we use complex wave functions. Thus we have for

the polarization potential Vp ’

3 &ﬁ)#(&) ,
VP("‘i)é)"’ a J' Z. e - c—em (F/M.;éf) +F(/,z;-ey)/é. (B7)

We first consider the evaluation of a typical term of the contribution from
F(1,2;¢'),

f1 ;'.}é’

€-€ -€, E'-€. +:ia . (B8)
it ]

We can close the contour by a large semi circle in either the upper or the
lower half plane since the integral tends to zero as fast as (e')-2 . We
choose the upper half plane in this case and thus we have a contribution only

when € corresponds to a particle, €n = %

1
("“t"') E-Em - & +cd 9/6'"'/“) (B9)

The imaginary part of €, cannow be absorbed in iA and we consider
€, to be real henceforth. The contribution from F(1,2; -¢') is obtained
similarly by closing the contour in the lower half plane. The complete ex-

pression for Vp becomes,

Vr(u,e)—- Z Z $n 0 & @) P, 1) P (D) (—i@f’—’—:—m %)

- Z;, 0 10) [ Flin;e-6n) Olem-p) - F (12; €n-¢) O """)] .

(B10)

B6)
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We now want to relate the polarization potential Vp to the linear response
function R . To obtain R we consider a small external charge density,
pex(-’i' t) , and calculate in a linear approximation the induced charge
density Pind(-’-‘-' t) . This induced charge density gives rise to an induced
potential ¢(x,t) . We define R Dby the relation

*
¢ (t)- Jz’.f"’@:l')ﬂna(g’,t)lé’ ’_{’ lflf/,!’l?év,g’,-{-éjﬂ“_/!"(y. (B11)

The induced charge density, o, .. from a perturbing potential w, is
according to (A8) and (A11), in the linear approximation,

Kto | Vhot) ple) Vit bo)y — bl Ultat)pty Uk#)|bs) =

LS

Pind (1st)

¢
i{ Ctol Lwnlt), paet)] | to) 2¢" . (B12)
We take, cf eq. (A7),
wy (¢) = / PI) VEEY) Pee (k) R By, (B13)

From (B12) we then have, puttingt_ = -o,

¢
[ 2% =‘i_£ ”lf W ol [ plest), plet)] |6y V(I K) Pere ) ,  (B14)

and comparing with (B11) we obtain

R (1ast-t)= - % Jnlr (1), pa) 16> V(1) vi,R) A4)AL) . (B15)

When we compare R with the polarization part of AV , eq. (A26), we find
that the main difference is that R has a commutator instead of a time-

-ordering operator. The Fourier transform of R with respect to time is,

Rbase)= | Rbwz)e oz = L(Flase) + Fl-8). @16

The reason that we have taken 0 to « as integration limits rather than -w
to o, is that R(1,2;7) does not appear for 1< 0 in eq. (B11). We now
relate the imaginary part of V p to R . From the definition of F we
have that,

rm F(l.z; é) = Fm 6,1.',6) = O for e< 0, (B17)
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and thus from (B10) and (B16),

I’"VP b2;¢)= Vp(n (2;e)= 4 ; én t) b lt)R(%,z',e—em)fé(e-e,..)éé,,-,.) + G- f,)éé,,,.ng

(B18)

where we have used the relations,

F&)@,t;é) =2 R(")(m.; e) fore >0
& (B19)
R fase) = - R¥(12;-¢)
From (B18) we find immediately,
()

Vi o) = O, (B20)

which relation has to be satisfied from general considerations, as shown by
Luttinger. We next want to relate the real part of Vp to R, and to that

end we write,

F%.Mé) = RWe,0) + i (F mﬁ,z; & - F("(I,zl-—e)) . (B21)

The second term of (B21) can be expressed in R(z) . Since

R(:.)@,z)e):: = Zs:-/ P, P:(&) (5(é +Eg) — 5(6-65)) , (B22)

we have

1/(-4 f) / €
L(F Al;é) -F (1,1;—6)) - Z:: PS(‘Y)PS?I) s T Tx féa ot k(?‘)!z w))«) (B23)
From (B10), (B21), and (B23) we finally have,

V”( 1)(""56) =L fati ) I R e-60) Ofem-e) = R712; €m-€) Ot -

2)

f(s —em)t- T R 02;w) dw ] ) (B24)
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